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We investigate how the phase space structure of a Three-Dimensional (3D) autonomous Hamil-
tonian system evolves across a series of successive Two-Dimensional (2D) and 3D pitchfork and
period-doubling bifurcations, as the transition of the parent families of Periodic Orbits (POs)
from stability to simple instability leads to the creation of new stable POs. Our research illus-
trates the consecutive alterations in the phase space structure near POs as the stability of the
main family of POs changes. This process gives rise to new families of POs within the system,
either maintaining the same or exhibiting higher multiplicity compared to their parent fami-
lies. Tracking such a phase space transformation is challenging in a 3D system. By utilizing
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the color and rotation technique to visualize the Four-Dimensional (4D) Poincaré surfaces of
section of the system, i.e. projecting them onto a 3D subspace and employing color to represent
the fourth dimension, we can identify distinct structural patterns. Perturbations of parent and
bifurcating stable POs result in the creation of tori characterized by a smooth color variation
on their surface. Furthermore, perturbations of simple unstable parent POs beyond the bifur-
cation point, which lead to the birth of new stable families of POs, result in the formation of
figure-8 structures of smooth color variations. These figure-8 formations surround well-shaped
tori around the bifurcated stable POs, losing their well-defined forms for energies further away
from the bifurcation point. We also observe that even slight perturbations of highly unstable
POs create a cloud of mixed color points, which rapidly move away from the location of the
PO. Our study introduces, for the first time, a systematic visualization of 4D surfaces of section
within the vicinity of higher multiplicity POs. It elucidates how, in these cases, the coexistence
of regular and chaotic orbits contributes to shaping the phase space landscape.

Keywords : Chaos and dynamical systems; galactic dynamics; 4D surfaces of section; pitchfork
bifurcation; period-doubling bifurcation.

1. Introduction

In this paper, we study the evolution of the phase
space structure in a Three-Dimensional (3D) barred
galactic potential before and after successive Two-
Dimensional (2D) and 3D pitchfork and period-
doubling bifurcations of families belonging to the
“x1-tree” [Skokos et al., 2002a]. The x1 family is
the main family of Periodic Orbits (POs), which
provides the building blocks for the bar in 2D-
galactic models [Contopoulos & Papayannopoulos,
1980; Athanassoula et al., 1983]. In general, the
POs of the x1 family have an elliptical-like morphol-
ogy in nonaxisymmetric galactic systems with their
major axis extending along the major axis of the
bar. As the system’s energy increases, the x1 POs
may develop cusps or even two loops at their edges.
The x1 family undergoes a series of bifurcations,
which in 3D systems, builds the so-called x1-tree
[Skokos et al., 2002a, 2002b]. We note that a pitch-
fork bifurcation1 of a family of a stable PO leads
to the creation of a pair of new stable POs of equal
period, with the parent family becoming unstable.
On the other hand, in the case of a period-doubling
bifurcation the destabilization of the parent family
produces a new stable PO having twice the period
of the original one (see e.g. [Lichtenberg & Lieber-
man, 1992, Sec. 7.1b]).

The phase space structure before and beyond
a 3D-pitchfork bifurcation of single members of the

x1 family has been studied in [Katsanikas & Pat-
sis, 2011]. Extending and in some sense complet-
ing that paper, we study in the present work how
the phase space of a 3D system evolves during suc-
cessive pitchfork bifurcations, also including in our
analysis period-doubling bifurcations. In particu-
lar, our investigation focuses on the evolution of
the phase space structure within the following sce-
nario: Initially, a 2D-pitchfork bifurcation of the
x1 family creates a new 2D family. Subsequently,
this new 2D family undergoes a bifurcation, tran-
sitioning into a 3D family via the same pitchfork
mechanism. Our analysis then delves into the alter-
ations observed in the system’s phase space as the
3D-family experiences two consecutive 3D period-
doubling bifurcations.

The first two cases are 2D and 3D bifurcations
that occur when a stable family of POs becomes
simple unstable (see Sec. 3.1 for the definition of the
various instability kinds of POs). At this transition,
we have the emergence of two new stable families of
POs having the same period as the parent one. The
other two cases refer to 3D bifurcations, which also
occur when a stable 3D family of POs becomes sim-
ple unstable. However, in this instance, a new 3D
family emerges whose multiplicity is double that of
the parent family.

The direct visualization of the phase space of
3D-Hamiltonian systems is not feasible because the

1A pitchfork bifurcation is also called “direct” or “supercritical” (see e.g. [Contopoulos, 2002, Sec. 2.4.3] and [Strogatz, 2018,
Sec. 3.4]).
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Poincaré Surface of Section (PSS) of these systems
is Four-Dimensional (4D). Starting with Froeschlé’s
[1970] pioneering work, several methods attempting
the visualization of the 4D PSSs have been pro-
posed and implemented. Some frequently applied
techniques include the 2D and 3D projections of
the 4D PSS [Martinet & Magnenat, 1981; Vrahatis
et al., 1997] and its stereoscopic views [Martinet
et al., 1981], along with the method of plotting
low-dimensional slices of the whole PSS [Froeschlé,
1970, 1972; Lange et al., 2014; Richter et al., 2014;
Onken et al., 2016].

Besides visualization per se, another fundamen-
tal obstacle when studying 4D sections of the phase
space is to trace the zones of influence of the var-
ious POs and thus assess their contribution to the
formation of specific phase space structures in each
investigated case. In other words, we always have
difficulty defining the “neighborhood” of the PO.
Contrarily to the by-eye appreciation of the bor-
ders of a stability island, of the border of a chaotic
layer between two stability islands, or even of the
presence of sticky zones in a 2D PSS, the landscape
of phase space structure in a 4D space is not dis-
cernible. For instance, a minor perturbation in the
initial conditions of an unstable PO might lead to an
orbit in a chaotic region of the phase space, while a
larger one could unexpectedly place the perturbed
orbit on a torus surrounding a nearby stable PO,
resulting in regular behavior. Therefore, we must
proceed with utmost care when we consider pertur-
bations of POs.

In our study, we use the color and rotation
technique [Patsis & Zachilas, 1994] to visualize the
4D PSS and to understand the underlying dynam-
ics of our 3D galactic-type Hamiltonian system.
Additional applications of this technique can be
found in [Katsanikas & Patsis, 2011, 2022; Kat-
sanikas et al., 2011; Zachilas et al., 2013; Pat-
sis & Katsanikas, 2014a, 2014b; Agaoglou et al.,
2021].

Another notable complexity in our study arises
from the necessity to visualize not just the immedi-
ate vicinity of a particular PO of single multiplic-
ity in the phase space, but to also consider cases
where double structures emerge (such as in cases of
period-doubling). Additionally, we want to incorpo-
rate within our visualization the modifications that
arise in the phase space around the parent family,
which is now unstable. Given the close proximity of
both the parent and newly generated POs in phase

space, our goal is to depict the phase space volume
encompassing both neighborhoods. This endeavor
has been attempted only once in the past [Kat-
sanikas et al., 2011] and needs to be investigated
in more detail.

This paper is organized as follows: The Hamil-
tonian model for the description of the rotating
barred galaxy is presented in Sec. 2. The stability of
POs and the color and rotation technique are dis-
cussed in Sec. 3. The phase space structure before
and after the considered bifurcations is investigated
in Sec. 4. Finally, the main findings and conclusions
of our work are summarized in Sec. 5.

2. The 3D-Hamiltonian Model

The Hamiltonian function governing the 3D-
rotating model of a barred galaxy is given by

H =
1
2
(p2

x + p2
y + p2

z) + V (x, y, z)

−Ωb(xpy − ypx), (1)

where x, y, and z are the Cartesian coordinates
and px, py, and pz are the canonically conjugate
momenta of a test particle, Ωb represents the pat-
tern speed of the bar and V is the total potential,
which, in our case, consists of three components: A
disk, a bar and a bulge. H is the Jacobi constant
of the model, and we will also refer to its numerical
value, Ej , as the “energy”.

To be more specific, V comprises the sum
of three individual potential terms delineating an
axisymmetric part, V0 = Vsphere + Vdisc, where
Vsphere and Vdisc are the bulge and disk terms,
respectively, alongside a component representing
the galaxy’s bar, Vbar.

The potential of the bulge is given by a Plum-
mer sphere [Plummer, 1911]

Vsphere(x, y, z) = − GMS√
x2 + y2 + z2 + ε2

s

, (2)

where εs is the scale length of the bulge, MS is its
mass, and G is the gravitational constant.

The disk is represented by a Miyamoto–Nagai
disc [Miyamoto & Nagai, 1975]

Vdisc(x, y, z) = − GMD√
x2 + y2 + (A +

√
B2 + z2)2

,

(3)
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where MD is the mass of the disk, while A and
B are, respectively, horizontal and vertical scale
lengths.

The bar component of the potential is

Vbar = −πGabc
ρc

3

∫ ∞

λ

du

Δ(u)
(1 − m2(u))3, (4)

where ρc = 105
32π

GMB
abc , m2(u) = y2

a2+u
+ x2

b2+u
+ z2

c2+u
,

Δ2(u) = (a2 + u)(b2 + u)(c2 + u), λ is the unique
positive solution to m2(λ) = 1 for the regions out-
side the bar (m ≥ 1) and λ = 0 for the region inside
the bar (m < 1), and a > b > c are the semi-axes of
the bar [Pfenniger, 1984]. The corresponding mass
density is

ρ =

⎧⎨
⎩

ρc(1 − m2)2 for m ≤ 1,

0 for m > 1,
(5)

with m2 = y2

a2 + x2

b2
+ z2

c2
, i.e. the major axis of the

bar is along the y-axis (see also [Pfenniger, 1984;
Skokos et al., 2002a]).

In our study, we use the following values for the
model’s parameters: Ωb = 0.054, a = 6, b = 1.5,
c = 0.6, A = 3, B = 1, εs = 0.4, MB = 0.2,
MD = 0.72, where the units are as follows: 1 kpc
(distance), 1 Myr (time), 2×1011 solar masses (M�)
(mass), and the total mass G(MS +MD +MB) = 1.
This arrangement corresponds to what was named
“model D” in [Skokos et al., 2002b].

3. Numerical Techniques

In our study, we numerically determine the stability
of POs and implement the method of color and rota-
tion to visualize the system’s 4D PSS. We briefly
present these techniques below.

3.1. Stability of periodic orbits

The tracing of POs is done by using a Newton iter-
ative method with an accuracy of at least 10−10. To
find the linear stability of POs in 3D-Hamiltonian
systems, we follow the algorithms introduced by
[Broucke, 1969; Hadjidemetriou, 1975]. The stabil-
ity of a PO is determined by the eigenvalues and
eigenvectors of the so-called Floquet (monodromy)
matrix M(T ), which is the fundamental solution
matrix of the PO’s variational equations evaluated
at a time equal to one period, T , of the orbit. The
various types of stabilities are classified according to

the stability indices b1, b2 and a quantity typically
denoted by Δ, which are calculated from the coeffi-
cients of the characteristic polynomial of M(T ) (see
e.g. [Contopoulos & Magnenat, 1985; Skokos, 2001]
for more details about the meaning and the com-
putation of b1, b2, and Δ). A PO is called stable
“S” if |b1|, |b2| < 2, and Δ > 0, simple unstable
“U” if |b1| < 2, |b2| > 2, or if |b1| > 2, |b2| < 2, and
Δ > 0, and double unstable “DU” if |b1|, |b2| > 2
and Δ > 0. If Δ < 0 the PO is complex unstable
“Δ”, a case that is encountered but not investigated
in this study.

3.2. The method of color and
rotation

Exploring the phase space dynamics of 2D-
Hamiltonian systems is straightforward using their
2D PSS, and the same applies to 2D-symplectic
maps since their phase portrait is also 2D. How-
ever, this approach becomes impractical when deal-
ing with systems of higher dimensions, in which the
PSS or phase portrait dimension is larger than two.
A method proposed to gain insight into the struc-
ture of the 4D PSS in 3D-Hamiltonian systems, or
the phase space of 4D-symplectic maps, is known as
the method of color and rotation [Patsis & Zachilas,
1994] (more details about this method can also be
found in [Katsanikas & Patsis, 2011]). In our study,
the color and rotation method is implemented by
following these steps:

(1) For a given initial condition, we numerically
integrate the system’s equations of motion
obtaining the orbit’s evolution in time. We find
many intersections of this orbit with the PSS
defined by y = 0, py > 0. As a result, we get
sets of points in the 4D (x, px, z, pz) space.

(2) We choose different 3D subspaces of the 4D
PSS, such as (x, px, z) or (x, z, pz), and plot the
three-tuples of the orbit’s points.

(3) We color each point in the 3D subspace accord-
ing to the value of its fourth coordinate.

(4) Additionally, we rotate the 3D objects using
some plotting software to enhance our compre-
hension of the developed structures.

When the color and rotation technique is used
on a 4D PSS, the presence of a torus with a smooth
color variation on its surface indicates the presence
of regular orbital behavior. On the other hand, the
chaotic nature of an orbit is reflected in the irregular
behavior of the points in the 3D subspace and/or
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by the mixing of these points’ colors representing
the fourth dimension [Patsis & Zachilas, 1994; Kat-
sanikas & Patsis, 2011; Katsanikas et al., 2013].

The system’s equations of motion for a fixed Ej

value and for an initial condition (x0, px0, z0, pz0) on
the PSS y = 0 (with the py0 > 0 defined by the
given Ej value) are numerically solved by imple-
menting the fourth-order Runge–Kutta integration
method. We use an appropriately chosen integration
time step for each orbit studied in our work, which
guarantees that the relative energy error remains
less than 10−10 for the orbit’s whole time evolution.

4. Numerical Results

4.1. Characteristic and stability
diagram

In what follows, we study in detail the evolution of
the phase space structure before and after a series
of 2D and 3D bifurcations of POs in the dynami-
cal system defined by the Hamiltonian (1). Specif-
ically, we investigate the alteration in the 4D PSS,
introduced by a 2D- and a 3D-pitchfork bifurcation,
alongside two 3D period-doubling bifurcations. We
note that in a 2D bifurcation, the POs of both the
parent and the created families are planar, lying on
the (x, y) symmetry plane of the galaxy model.

As depicted in Figs. 1(a) and 1(b), showcasing
the “characteristic diagram” (i.e. the coordinates of
the initial conditions of the POs as a function of
Ej) for the main planar family x1 (represented by
black curves), this family experiences a bifurcation
at energy EA = −0.3924. This bifurcation leads to
the birth of two new planar (2D) families, which are
initially stable (blue curves in Fig. 1). The first fam-
ily is named “thr1” and its symmetric with respect
to the y-axis counterpart is denoted as “thr1S”.2

Subsequently, the family thr1 becomes verti-
cally unstable and undergoes another bifurcation at
energy EB = −0.3356, resulting in the appearance
of two new, initially stable, 3D families, denoted
by “thrz1” and “thrz1S” [red curves in Figs. 1(a)
and 1(c)]. Again, here “S” indicates symmetry, this
time with respect to the equatorial plane of the
model. We note that the family thr1S undergoes
a similar bifurcation at EB , which we nevertheless
do not include in the diagrams of Fig. 1 for the sake
of clarity.

At energy EC = −0.3203, the thrz1 fam-
ily undergoes a period-doubling bifurcation, giv-
ing rise to a family of multiplicity two, named
“thrz1(mul2)”, together with its symmetric family,
“thrz1(mul2)S”, bifurcating from the thrz1S family
at the same energy. These two families are depicted
in green in Figs. 1(a) and 1(c). We note that the
multiplicity of a PO refers to the number of times
it intersects the PSS (where y = 0 and py > 0)
within a single orbital period T .

Then, at energy ED = −0.2943 the thrz1(mul2)
family [and its counterpart thrz1(mul2)S] under-
goes another period-doubling bifurcation becom-
ing simple unstable, generating at the same time
the stable “thrz1(mul4)” family [and its counter-
part “thrz1(mul4)S”] of multiplicity four [magenta
curves in Figs. 1(a) and 1(c), which are also indi-
cated by arrows in Fig. 1(a)]. We note that the
upper magenta curve of thrz1(mul4) in Figs. 1(a)
and 1(c) actually corresponds to two curves, which
practically overlap at the presented projections.
The different stability kinds of the POs of each fam-
ily are represented by different curve styles: sta-
ble parts of families of POs are represented by
solid curves, simple unstable POs by dotted curves,
double unstable POs by open circles and complex
unstable POs by “×” symbols.

In Fig. 2, we give the so-called “stability dia-
gram” [Contopoulos & Magnenat, 1985], i.e. the
evolution of the stability indices b1 and b2 of the
various families of POs we consider in our study,
as a function of Ej . The stability indices b1 and
b2 are, respectively, related to vertical and planar
(radial) perturbations. Both indices of each family
are plotted with the same color, but different colors
are used for different families of POs. Black curves
correspond to the main family x1. The transition of
x1 from stability to simple instability at energy EA

results in the creation of family thr1 and its sym-
metric counterpart, thr1S (blue curves). This is the
first bifurcation we study in detail in this work, and
it happens when the radial index b2 of x1 crosses
the b = −2 axis.

The thr1 (and thr1S) family remains stable
until the transition to instability at energy EB ,
where we have the birth of the 3D-stable families
thrz1 and thrz1S (red curves). This bifurcation takes
place when the vertical index b1 of thr1 crosses the
b = −2 axis.

2The name indicates a three-to-one resonant family, referring to resonances encountered on deferentially rotating galactic disks
(see e.g. [Contopoulos, 2002, Sec. 3.4]).
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(a)

(b) (c)

Fig. 1. (a) The 3D-characteristic diagram (Ej , x, z) of the families of POs we consider in our study: thr1 (blue curves),
thrz1 (red curves), thrz1(mul2) (green curves), thrz1(mul4) (magenta curves) and their symmetric counterparts thr1S, thrz1S,
thrz1(mul2)S, thrz1(mul4)S, as well as of the main 2D-family x1 (black curves). (b) The 2D-characteristic diagram (Ej , x)
of the 2D families shown in (a), obtained by a 2D projection of part of panel (a). (c) The 2D-characteristic diagram (Ej , z)
of part of the diagram shown in (a). The different stability types of the POs are denoted by different curve styles: stable
(solid curves), simple unstable (dashed curves), double unstable (open circles), and complex unstable (“×” symbols). The
values of the system’s energy Ej where bifurcations are taking place are EA = −0.3924, EB = −0.3356, EC = −0.3203, and
ED = −0.2943. We note that the thrz1(mul4) has four branches in panels (a) and (c), but the upper two branches (for z > 0)
practically overlap.

At even larger energies, the 3D families
thrz1(mul2) and thrz1(mul2)S (green curves) are
introduced at the first transition from stability
to simple instability of the thrz1 family, which is
caused by the crossing, in this case, of the b2 index
of thrz1 with the b = 2 line at energy EC .

Then, at ED, through another period-doubling
bifurcation, as the green b2 index crosses the b =
2 axis, the multiplicity four family thrz1(mul4)
(magenta curves) is born from thrz1(mul2). We note

that the values of the stability indices for each of the
families, thr1, thrz1, thrz1(mul2), and thrz1(mul4)
are, respectively, equal to the ones of their symmet-
ric counterparts thr1S, thrz1S, thrz1(mul2)S, and
thrz1(mul4)S. As we can observe in Fig. 2, the sta-
bility curves of the families that are introduced in
the system by period-doubling do not emerge from
the intersection of a stability index of the parent
family with the b = 2 axis. This would have hap-
pened only if we had computed the stability indices

2430013-6
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Fig. 2. Stability diagram, i.e. the vertical (b1) and the radial (b2) stability indices as a function of the energy Ej , of the
considered families of POs, namely x1 (black curves), thr1 (blue curves), thrz1 (red curves), thrz1(mul2) (green curves), and
thrz1(mul4) (magenta curves) (see also the legend at the top of the figure). The four vertical purple lines denoted by EA,
EB , EC , and ED, respectively, indicate the bifurcation points at which the creation of family thr1 from x1, thrz1 from thr1,
thrz1(mul2) from thrz1, and thrz1(mul4) from thrz1(mul2) takes place. The magenta-shaded areas denote energy intervals
where the thrz1(mul4) family is complex unstable and thus b1, b2 are not defined. The four vertical orange lines indicate the
energies E1 = −0.3183, E2 = −0.3157, E3 = −0.2941, and E4 = −0.2907 of the four specific cases discussed in Sec. 4.4 (see
also Table 1).

of the parent family by considering it to be of dou-
ble multiplicity (see Appendix A in [Skokos et al.,
2002b; Patsis & Athanassoula, 2019]).

As we can see from the plots of Fig. 3, where
representative stable POs of families x1 [Fig. 3(a)],
thr1 [Fig. 3(b)], thrz1 [Fig. 3(c)], thrz1(mul2)
[Fig. 3(d)], and thrz1(mul4) [Fig. 3(e)] are pre-
sented, the POs of x1, thr1, and thrz1 have mul-
tiplicity one, since they cross the y = 0 axis with
py > 0 only once in one orbital period. On the other
hand, the PO of thrz1(mul2) [Fig. 3(d)] has two such
crossings in one period and consequently its multi-
plicity is two, while the thrz1(mul4) PO [Fig. 3(e)]
is of multiplicity four.

The characteristic diagram in Fig. 1 and the
stability diagram in Fig. 2, together with the mor-
phology of the POs of each family depicted in Fig. 3,
will be our primary guides in our effort to follow
the dynamical evolution of phase space structures
we find in the 4D PSS, as the various bifurcations
take place.

Fig. 3. Representative stable POs of the five considered fam-
ilies: (a) an elliptical-like x1 PO for Ej = −0.41, (b) a thr1
PO for Ej = −0.35, (c) a thrz1 PO for Ej = −0.3306, (d) a
multiplicity two thrz1(mul2) PO for Ej = −0.3183, and (e) a
multiplicity four thrz1(mul4) PO for Ej = −0.2831. From left
to right in (c), (d), and (e), the orbits are shown at different
2D projections, namely the (x, y), (x, z), and (y, z) planes.

2430013-7
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4.2. A 2D-pitchfork bifurcation

Figure 2 indicates that the main planar x1 fam-
ily is stable for small Ej values, as both its stabil-
ity indices (black curves) are between −2 and 2.
As the system’s energy Ej increases, the x1 family
becomes simple unstable at EA = −0.3924, leading
to the creation of two, initially stable, 2D families
of POs: thr1 [a representative PO of which is shown
in Fig. 3(b)], and its symmetric counterpart thr1S.
The thr1 (and thr1S) family is stable for EA < Ej <
EB = −0.3356 (blue curves in Fig. 2), whereas the
x1 family remains simple unstable in this interval,
apart from the interval −0.374 < Ej < −0.359 in
which it is double unstable.

A representative example of the system’s 4D
PSS in the vicinity of the POs of the main family
x1, for energies before the critical point of the 2D-
pitchfork bifurcation at EA, and in particular for
Ej = −0.41 < EA, is presented in Fig. 4. At this
energy, the x1 PO is surrounded by invariant tori
because it is stable. The particular torus shown in
Fig. 4 is obtained by perturbing the x1 PO’s initial
condition z0 by Δz = 5× 10−2. The existence of an
invariant torus around the stable x1 PO in the 3D
subspace (px, z, pz) of the 4D PSS shown in Fig. 4,
together with the color variation along this object,
indicate that the orbits obtained by small pertur-
bations of the x1 PO remain confined around it,
exhibiting regular motion. The smooth color varia-
tion observed on the torus in Fig. 4 implies a similar

Fig. 4. The 3D projection (px, z, pz) of the 4D PSS of a
quasiperiodic orbit forming a torus around the stable x1 PO
at Ej = −0.41 < EA. The color scale at the right part of
the figure is used to color the consequents according to the
value of their x coordinate. The initial condition of the shown
orbit is obtained by a Δz = 5 × 10−2 perturbation of the
PO’s initial condition in the z-direction. The primary hue
of the color shifts from one side of the torus to the other
(from the inner to the outer regions and vice versa) once it
moves beyond the areas demarcated by bold, black straight-
line segments (see text).

consistent configuration of this object in the fourth
dimension of the PSS, namely in x. This suggests
that projecting this orbit into any possible 3D sub-
space of the PSS would generate a torus-like object
displaying an ordered variation of colors.

We note that in Fig. 4, moving anticlockwise
from the point indicated by an orange arrow at
the exterior surface of the torus (clockwise from
the one pointed out by a blue arrow on the inte-
rior surface of the torus) we follow points which
retain their color by switching from the external
to the internal side of the torus (and vice versa)
when they reach the transition region between the
orange and blue colors (the regions of transition
are indicated by heavy solid, black lines in Fig. 4).
Such smooth color transitions on a projected torus
were discussed in detail in [Katsanikas & Patsis,
2011]. Upon examining the color variation closely,
we notice it is complex. The variation occurs in
both the toroidal and poloidal directions. The bold,
black, straight line segments outlined in Fig. 4 sig-
nify the area beyond which essentially the obser-
vation of a color hue along the same side of the
torus ceases and continues along the other side. We
underline that the regular character of an orbit is
associated with the smoothness of the color varia-
tion and not with the exact pattern it follows.

When Ej becomes slightly greater than EA, the
POs of the x1 family are simple unstable, while the
planar 2D POs of the bifurcated thr1 family, as well
as the POs of its symmetric family thr1S, are sta-
ble. The simple instability of the x1 family within
this energy range is a radial instability. This is indi-
cated by the fact that the b2 index, which is related
to radial perturbations, crosses the b = −2 axis
becoming b2 < −2. Regarding vertical perturba-
tions, the b1 index of the x1 family remains within
the −2 < b1 < 2 range, indicating vertical stability.

Perturbations of the unstable x1 POs in the
radial direction, for example by changing their x
coordinate by Δx, results in 2D, planar orbits and
in the creation of a typical “figure-8” structure on
the (x, px) projection of the 4D PSS (note that in
this case z = pz = 0), with the unstable x1 PO
located at the center of the “8” formation, while
the stability islands of the two, newly bifurcated
stable families are positioned within the two lobes of
the figure-8 structure (see e.g. [Contopoulos, 2002,
Fig. 2.45]). Actually, this arrangement represents
the typical configuration observed in 2D PSSs under
such circumstances.
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However, an interesting feature of our 3D
system, is that the figure-8 configuration is also
retained in the (x, px) projection of the PSS for
a range of, rather small, vertical perturbations of
the unstable x1 POs. For example, we found that
for Ej = −0.3919, this structure is present for
Δz ≤ 2×10−2. In Fig. 5, we present the 3D-colored
(x, px, z) projection of the 4D PSS for a perturba-
tion by Δz = 2×10−2 along the z-axis of the simple
unstable x1 PO for Ej = −0.3919 > EA. Each point
in this plot is colored according to its pz value. As
we can observe, the (x, px) projection of the cre-
ated structure has the anticipated 8-shaped form
with the unstable x1 PO located at the center of the
projected “8” figure. It is worth noting that the con-
sequents do not disperse in the z-direction; instead,
they form a ribbon-like structure in the 4D PSS,
something which is indicated by the points’ smooth
color variation. Similar to the torus of the quasiperi-
odic orbit in Fig. 4, we also observe characteristic
color transitions from the outer to the inner side of
the structure for the current orbit. In Appendix A,
we discuss some practical aspects, which should be
taken into account for studies of 3D orbits near sim-
ple unstable POs that maintain vertical stability. To
the best of our knowledge, the presentation of this
8-shaped structure is the first investigation of phase
space structures linked to z-axis perturbations of a
radial unstable and vertically stable PO. Our explo-
ration is concentrated on phase space structures in
the vicinity of this PO, which are extended beyond
the 2D plane. Such interesting behaviors warrants
further systematic investigation.

As expected, the perturbation of the stable pla-
nar thr1 PO in the z-direction (Fig. 6) results in the
creation of an invariant torus around the PO, which
is characterized by a smooth color variation, similar

Fig. 5. The 3D-colored (x, px, z) projection of the system’s
4D PSS for a perturbation of the unstable x1 PO by Δz =
2 × 10−2 for Ej = −0.3919 (EA < Ej < EB).

Fig. 6. The 3D-colored (px, z, pz) projection of the system’s
4D PSS for a perturbation of the stable thr1 PO by Δz =
5 × 10−2 for Ej = −0.3919.

to what is seen in Fig. 4. Once more, we note the
transitions of distinct color zones (blue and red in
this case) moving from the outer to the inner sur-
face of the torus and vice versa, which occur along
the regions where the darker blue- and red-colored
areas intersect. Tori similar to the ones around
the thr1 POs are found around the thr1S POs as
well. These tori correspond to quasiperiodic orbits
around the stable, bifurcated families and they are
situated within the lobes of the 8-shaped structure
illustrated, for instance, in Fig. 5 (see also the cases
described in Sec. 4.3).

4.3. A 3D-pitchfork bifurcation

As the energy increases, the stability of the new
families varies. A transition of the planar family
thr1 from stability to simple instability at energy
EB = −0.3356 creates two new, initially stable,
3D families of POs through a pitchfork bifurcation,
i.e. thrz1 and thrz1S (see Fig. 1). Since there is no
difference whether we follow thrz1 or thrz1S, our
presentation focuses on describing the evolution of
the phase space structure in the vicinity of thrz1

orbits. The morphology of the thrz1 family is seen
in Fig. 3(c), where the stable member of this fam-
ily for Ej = −0.3306 is depicted. As we can see
in Fig. 2, the thrz1 family becomes simple unstable
at energy EC = −0.3203 and further retains that
kind of instability. Observing the stability indices
of the thr1 family in Fig. 2 (blue curves), we notice
that it is its vertical index, b1, that intersects the
b = −2 axis. Consequently, for Ej > EB the family
thr1 initially becomes vertically unstable, although
it maintains its radial stability, as indicated by the
evolution of its b2 index.

Let us first investigate the phase space struc-
ture for energies slightly larger than EB so that
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Fig. 7. The 3D-colored (x, z, pz) projection of the system’s
4D PSS at Ej = −0.3307 for perturbations of the simple

unstable thr1 PO by Δz = 10−5 (figure-8 structure), as well
as the stable thrz1 (right torus) and thrz1S (left torus) POs
by Δz = 5 × 10−2. The two sequences of numbered points
denoted by black diamonds show the first five consequents of
orbits with initial conditions on each torus.

the planar thr1 family is simple unstable and the
3D-family thrz1 (and thrz1S) is stable. In Fig. 7,
we show the 3D projection (x, z, pz) of the system’s
PSS, for perturbations of the thr1, thrz1, and thrz1S
POs at Ej = −0.3307, with points being colored
according to their px values. The consequents of the
orbit generated by a Δz = 10−5 perturbation of the
simple unstable 2D-thr1 PO create a thin figure-8
structure in the (x, z, pz) projection in Fig. 7. Due
to the unstable nature of the thr1 PO, even a very
small Δz perturbation of the orbit in the z-direction
results in chaotic orbits moving away from the PO
located at the intersection of the two halves of the
figure-8 structure.

The perturbation in the z-direction of the two
stable thrz1 and thrz1S POs by Δz = 5×10−2 leads
to quasiperiodic motion on the two invariant tori
shown in Fig. 7. The right torus corresponds to the
perturbation of the thrz1 PO, and the left one to
the perturbation of the thrz1S PO. Since the two
bifurcated families are of single multiplicity, akin to
the parent one, thr1, the two tori are not connected
to each other. Consequents of any initial condition
on the right or left torus always remain on the same
torus. The first five consequents of the two orbits
depicted in Fig. 7 are denoted by numbered black
diamond symbols. The 4D morphology of each one
of the two tori in Fig. 7 is similar to the one observed
for the perturbations of the stable x1 (Fig. 4) and
thr1 (Fig. 6) POs.

It is interesting to observe that these three
orbits exhibit a different configuration in an alter-
nate projection, although the perturbation of the
thr1 PO maintains the 8-shaped outline, while the

Fig. 8. The same orbits depicted in Fig. 7, but using the
(x, px, z) 3D projection.

quasiperiodic orbits near the stable thrz1 and thrz1S
POs retain their toroidal structure. In Fig. 8, we
depict the same orbits as in Fig. 7, but by using
the (x, px, z) projection of the PSS and the pz coor-
dinate for giving the color to the consequents. In
this case, we observe that the tori, corresponding to
the quasiperiodic orbits, around the stable POs of
the newly bifurcated families surround an 8-shaped
ribbon-like structure, which again has at the inter-
section of its lobes the unstable thr1 PO.

It is worth noting that the relative projection
of the tori and the 8-shaped structures depends on
the chosen 3D projection and the perturbations we
apply to the POs. For the same POs considered in
Figs. 7 and 8 we apply a different set of pertur-
bations, namely a Δz = 10−5 perturbation to the
simple unstable thr1 PO, and both Δpx = 2.5×10−3

and Δpz = 1.2×10−2 to its stable bifurcations thrz1

and thrz1S, to obtain the configuration observed in
Fig. 9. We also note that the consequents creating
the 8-shaped structure in Fig. 9 start diffusing in the

Fig. 9. The (x, px, z) 3D projection of a perturbed thr1
PO by Δz = 10−5, together with the tori corresponding to
the quasiperiodic orbits around the POs thrz1 and thrz1S
obtained by a Δpx = 2.5 × 10−3 and Δpz = 1.2 × 10−2

perturbation of each family. All orbits have Ej = −0.3307.
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4D PSS at time t ≈ 105 and will occupy a larger vol-
ume of phase space abruptly, after integrating the
orbit for time t � 5 × 105 (note that the orbits in
Fig. 9 were integrated until t = 104). It should be
emphasized that the distinctive 8-shaped structures
are observed when perturbations in Δz are intro-
duced. If we introduce relatively small radial per-
turbations, i.e. Δx or Δpx, to the initial conditions
of the planar POs of the thr1 family, the resulting
orbits will also remain planar. Then, we will observe
in the (x, px) projection of the 4D-PSS closed curves
around the simple unstable PO, resembling the pat-
terns seen around the x1 family in Fig. 4 of [Patsis
& Katsanikas, 2014a].

We now turn our attention to the morpholo-
gies supported in the system’s configuration space
(x, y, z) by quasiperiodic orbits around the thr1 and
thrz1 POs close to the bifurcation energy EB . For
energies Ej < EB , the 2D-family thr1 is stable. All
three 2D projections, i.e. (x, y), (x, z), and (y, z), of
its orbits obtained by perturbing the thr1 PO along
the z-axis by Δz = 5×10−2, for energies Ej = −0.38
and Ej = −0.338, are presented in Figs. 10(a) and
10(b), respectively. For energies Ej > EB , thrz1 and
its symmetric family thrz1S, are stable. In Fig. 3(c),
we have already given the 2D projections of the
3D-thrz1 PO for Ej = −0.3306. The quasiperiodic
orbits obtained by a Δz = 5 × 10−2 perturbation

(a)

(b)

(c)

(d)

Fig. 10. 2D projections on the (x, y) (left column), (x, z)
(middle column), and (y, z) (right column) planes of
quasiperiodic orbits around the 2D-thr1 and 3D-thrz1 POs
obtained by a Δz = 5 × 10−2 perturbation. (a) and (b)
The perturbed thr1 orbit for Ej = −0.38 and Ej = −0.338,
respectively. (c) and (d) The perturbed thrz1 orbit for Ej =
−0.3346 and Ej = −0.33, respectively.

of the thrz1 POs for Ej = −0.3346 and Ej = −0.33
are, respectively, shown in Figs. 10(c) and 10(d).

By comparing the projections of the 3D
quasiperiodic orbits around the 2D-stable thr1 PO
for Ej < EB [Figs. 10(a) and 10(b)] to the ones of
the 3D-stable thrz1 PO [Fig. 3(c)] and those of the
quasiperiodic orbits for Ej = −0.3346 [Fig. 10(c)]
and Ej = −0.33 [Fig. 10(d)], for which we have
Ej > EB , we see that all orbits have similar mor-
phologies on the (x, y) plane. On the other hand,
the (x, z) and (y, z) projections of the perturbed
thr1 orbit for energies further away from the bifur-
cation point [Fig. 10(a)] are quite different from the
ones exhibited by the 3D-thrz1 PO [Fig. 3(c)] and
its perturbation [Figs. 10(c) and 10(d)]. Neverthe-
less, for energies closer to, but still below the bifur-
cation point EB , the (x, z) and (y, z) projections
of the 3D perturbation of the 2D-stable thr1 PO
[Fig. 10(b)] become very similar to the ones shown
by the thrz1 PO [Fig. 3(c)] and its perturbed orbits
[Figs. 10(c) and 10(d)], despite the fact that the
thrz1 family does not even exist for Ej < EB. There-
fore, we can infer that, to some extent, the morphol-
ogy in the configuration space of the 3D perturba-
tions of the 2D-thr1 POs close before the bifurcation
(Ej < EB) foreshadows the shape of the 3D PO
which will be introduced in the system at a large
energy (Ej = EB). This evolution of the shapes of
the quasiperiodic orbits towards the morphology of
the upcoming bifurcating family has already been
noticed earlier by [Patsis & Katsanikas, 2014a] in a
different case.

4.4. Two 3D period-doubling
bifurcations

The 3D-thrz1 family has a transition from stabil-
ity to simple instability at energy EC = −0.3203.
At this point, its b2 stability index becomes b2 >
2 (see Fig. 2), and a period-doubling bifurcation
takes place [Contopoulos, 2002, Sec. 2.11.2], lead-
ing to the creation of the 3D-family thrz1(mul2)
and its symmetric counterpart thrz1(mul2)S. As
we can observe in Fig. 2, the thrz1(mul2) family
of POs is initially stable, becoming unstable at
ED = −0.2943, having also an interval of double
instability for −0.2807 < Ej < −0.2692. The mor-
phology of this family is given in Fig. 3(d), where
its member for Ej = −0.3183 is depicted.

At energy ED, the multiplicity four, 3D-family
thrz1(mul4) (magenta curves in Fig. 1), together
with its symmetric counterpart thrz1(mul4)S are
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introduced in the system through a period-
doubling bifurcation of the thrz1(mul2) family.
The thrz1(mul4) family is initially stable and it
becomes complex unstable in the energy intervals
corresponding to the magenta shaded regions in
Fig. 2, namely for −0.2917 < Ej < −0.2872, and
−0.2667 < Ej < −0.2622. A stable member of this
family, for Ej = −0.2831, is depicted in Fig. 3(e).

In order to investigate the impact of these two
period-doubling bifurcations on the phase space
structure more deeply, we analyze four distinct
cases with energies Ei > EC , where i = 1, 2, 3, 4.
These specific cases are selected to ensure that
the four primary families of POs investigated in
our study, namely thr1, thrz1, thrz1(mul2), and
thrz1(mul4), exhibit diverse combinations of their
kinds of stability. The Ej values for these cases, the
nature of stability exhibited by the specific POs,
which are analyzed within the families, and the
figures presenting the corresponding PSS are out-
lined in Table 1. We note that the values of Ei,
i = 1, 2, 3, 4 are indicated by vertical orange lines
in Fig. 2, with the first two being located between
energies EC and ED [where the thrz1(mul4) family
does not yet exist], and the other two being larger
than ED.

4.4.1. Case 1

In Fig. 2, we see that for energy E1 = −0.3183,
just beyond the bifurcation point EC , the thr1
(blue curves) and thrz1 (red curves) POs are simple
unstable, while the multiplicity two PO thrz1(mul2)
(green curves) is stable. As we can see in Fig. 11(a),
a Δz = 10−5 perturbation of the simple unsta-
ble thr1 PO leads to a dispersed set of points,
which vaguely form a figure-8 structure. This struc-
ture is not as well defined as in Fig. 7. The thrz1

PO, and its symmetric counterpart thrz1S, are not
stable anymore and thus they are not surrounded

by tori, around which the thr1 perturbations could
form clear figure-8 structures. The existence of tori
around the stable POs of the bifurcating fami-
lies, during the transition of the parent family
from stability to simple instability, plays a crucial
role in sustaining the 8-shaped structure. As the
consequents of the perturbed orbit are guided by
the asymptotic curves of the unstable manifolds
(cf. Fig. 12 in [Katsanikas et al., 2013]), they give
rise to 8-shaped structures sticking around the tori
associated with the quasiperiodic orbits in the vicin-
ity of the stable POs of the bifurcating families.

Nevertheless, it is noteworthy that the scat-
tered consequents of the perturbed thr1 orbit in
Fig. 11(a) exhibit a smooth color variation, when
they collectively shape the loosely defined 8-shaped
structure. This suggests a sticky behavior, which
may manifest within a significant time period for
the dynamics of disk galaxies.

In any case, thr1 orbit perturbed by Δz =
10−5 at Ej = E1 exhibits different behavior com-
pared to the thr1 orbit perturbed by the same
Δz at Ej = −0.3307 (Fig. 7). This serves as a
notable illustration of the variations occurring in
the vicinity of a PO (in this case, a simple unstable
PO) as we move away from its bifurcation point.
Therefore, whenever we refer to the typical phase
space structures emerging around unstable POs of
various kinds, we are always referring to the orbits’
immediate neighborhood as structured right after
the bifurcation that introduces the PO into the
system.

We also note that introducing a perturbation
Δx to the planar thr1 orbit for Ej = E1 leads
to planar orbits. The nature of these orbits on
the (x, px) projection of the PSS depends on the
magnitude of the perturbation; they may exhibit
planar quasiperiodic behavior, or diffuse within
the available phase space. In the specific case
under consideration, we found orbits occupying

Table 1. In successive columns, we give the energy values Ei, i = 1, 2, 3, 4, the stability kinds of the POs of the families thr1,
thrz1, thrz1(mul2), thrz1(mul4) at these energies, and the figures’ numbers where the corresponding PSS is presented, for
the four specific cases discussed in Sec. 4.4. S, U, DU, and Δ, respectively, stand for stable, simple unstable, double unstable,
and complex unstable POs, while “—” denotes that the family does not exist at the specific energy.

Case Ej thr1 thrz1 thrz1(mul2) thrz1(mul4) Figures

1 E1 = −0.3183 U U S — Fig. 11

2 E2 = −0.3157 DU U S — Fig. 12

3 E3 = −0.2941 U U U S Fig. 14

4 E4 = −0.2907 U U U Δ Fig. 15
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the available phase space for perturbations with
Δx = 10−1, while for Δx = 10−2, the orbit is
quasiperiodic.

We observe a somewhat different outcome when
we apply a perturbation Δz = 2.4 × 10−6 to the
simple unstable thrz1 (thrz1S) PO at the right (left)
side of Fig. 11(a). This perturbation results in the
formation of a figure-8 structure, well defined this
time, characterized by a smooth color variation.
We note that the simple unstable thrz1 (thrz1S)
PO resides at the junction of the two loops of the
right (left) figure-8 structure in Fig. 11(a). These
two figure-8 formations are developed around tori
corresponding to quasiperiodic orbits near the mul-
tiplicity two stable PO of the thrz1(mul2) family

(a)

(b)

Fig. 11. (Case 1 of Table 1) The 3D-colored (x, z, pz) pro-
jection of the system’s 4D PSS at energy E1 = −0.3183. In
(a) we observe orbits created by perturbations of the sim-
ple unstable thr1 PO by Δz = 10−5 (forming a loosely
defined 8-shaped structure), and the simple unstable thrz1

(right figure-8 structure) and thrz1S (left figure-8 structure)
POs by Δz = 2.4 × 10−6. (b) A magnification of the figure-
8 structure of panel (a), where also two tori created by a
Δz = 2.3 × 10−2 perturbation of the stable thrz1(mul2) PO
are included. The line-connected points denoted by black dia-
mond symbols correspond to the first five consequents of a
quasiperiodic orbit.

[and the thrz1(mul2)S]. Such tori created by a Δz =
2.3 × 10−2 perturbation of the thrz1(mul2) PO are
given in Fig. 11(b). The figure-8 structure created
by a Δz = 2.4 × 10−6 perturbation of the simple
unstable thrz1 PO is also presented in the same
panel. This arrangement is equivalent to the one
seen in Fig. 7, with the main difference being that
the two tori in Fig. 11(b) belong to the same orbit,
while the ones depicted in Fig. 7 belong to two
different orbits. The connection of the two tori in
Fig. 11(b) becomes apparent by tracing the location
of the successive consequents starting by the initial
condition identified by “1” and denoted by a black
diamond on the left torus. By following the first five
consequents of that orbit in Fig. 11(b) (shown by
line-connected black diamond symbols), we see that
they alternatively belong to the left and the right
torus. On the other hand, the consequents of an ini-
tial condition on the left or the right torus of Fig. 7
remain on the same torus.

4.4.2. Case 2

We now move on to the case where Ej = E2,
just beyond the transition of thr1 from simple to
double instability. As we observe in Fig. 2, at E2 =
−0.3157, the thr1 family (blue curves) is double
unstable. In contrast, the thrz1 and thrz1(mul2)
families (red and green curves, respectively) retain
the same instability they had in Case 1, i.e. they,
respectively, are simple unstable and stable. Now,
for the thr1 PO, a perturbation by Δz = 10−5 of its
initial condition leads to a very chaotic orbit whose
consequents diffuse quickly, have mixed colors and
look quite scattered in the 3D projection (x, z, pz) of
the PSS [Fig. 12(a)]. We do not discern any trace of
a figure-8 formation, as in the vicinity of the mem-
ber of the family presented in Fig. 11(a), where the
thr1 PO was simple unstable.

The phase space structure in the neighborhood
of the simple unstable PO thrz1 at the same energy,
Ej = E2, is different. Perturbations by Δz =
2.9 × 10−6 of this PO [right part of Fig. 12(a), and
Fig. 12(b)] and its symmetric counterpart thrz1S
[left part of Fig. 12(a)] lead to the formation of
an apparent figure-8-like structure, with a smooth
color variation along it. This 8-shaped structure is
not perpetual. Over time, the subsequent points
of the orbit gradually distance themselves from
this structure. What we are observing here is a
form of sticky behavior. Nevertheless, these sticky
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(a)

(b)

Fig. 12. (Case 2 of Table 1) The 3D-colored (x, z, pz) projec-
tion of the system’s 4D PSS at energy E2 = −0.3157. In (a)
we observe the orbits created by perturbations of the double
unstable thr1 PO by Δz = 10−5 (scattered points), the sim-
ple unstable thrz1 (right figure-8-like structure) and thrz1S
(left figure-8-like structure) POs by Δz = 2.9 × 10−6. The
figure also includes perturbed orbits of the stable thrz1(mul2)
(small yellowish tori for z > 0) and thrz1(mul2)S (small yel-
lowish tori for z < 0) by Δz = 1.4 × 10−2 and Δpz =
5 × 10−3, respectively. (b) A zoomed-in region contain-
ing orbits around the thrz1 (figure-8-like configuration) and
thrz1(mul2) (smooth tori) POs shown in the right part of
panel (a) (z > 0).

figure-8 formations still surround smooth invariant
tori created by perturbations (Δz = 1.4 × 10−2

and Δpz = 5 × 10−3) of the stable thrz1(mul2)
PO [Fig. 12(b)]. By comparing Figs. 11(b)
and 12(b), we see that the figure-8 formation, cre-
ated by a Δz perturbation of the simple unsta-
ble thrz1 PO becomes less well shaped as energy
increases.

Applying radial perturbations to POs at Ej =
E2 yields insightful outcomes. The planar family
thr1 exhibits double instability. The 4D PSS shows
strong chaos in the vicinity of nonplanar doubly
unstable POs. Typically, the consequents of the
orbits form clouds of points with mixed colors [Kat-
sanikas et al., 2013]. A Δx perturbation of the thr1
PO leads to a planar orbit. In the case of Fig. 13,

where the perturbation is Δx = 10−5, the orbit
does not display significant diffusion on the (x, px)
section. Instead, it forms a distinctive 8-shaped
structure.

It is worth mentioning that Δx perturbations
of the thrz1 family rapidly diffuse in phase space,
following an initial period where they form an 8-
shaped structure. This behavior is anticipated given
the radially unstable nature of the simple unstable
thrz1 PO.

4.4.3. Case 3

The next case we investigate is for E3 = −0.2941.
At this energy, both thr1 and thrz1 POs are simple
unstable and their Δz perturbations lead to chaotic
orbits, whose consequents create clouds of scattered
points with mixed colors in every 3D projection of
the system’s PSS. On the other hand, a perturba-
tion Δz = 3 × 10−6 of the multiplicity two, simple
unstable thrz1(mul2) PO, having its radial stabil-
ity index b2 > 0, results in the formation of two
figure-8 structures. They are formed in the vicinity
of the two initial conditions of the PO [Fig. 14(a)].
These two rather thin figure-8 formations reside
around invariant tori in the vicinity of the sta-
ble PO thrz1(mul4). We note that the thrz1(mul4)
PO is of multiplicity four, so its perturbations lead
to the creation of four tori, which are character-
ized by a smooth color variation on their surface.
Such tori created by perturbing three coordinates of
the thrz1(mul4) PO initial conditions (Δx = 10−5,
Δz = 6 × 10−5, and Δpz = 8 × 10−5) are shown
in Figs. 14(b) and 14(c). As the two figure-8 for-
mations around the simple unstable thrz1 (mul2)

Fig. 13. The (x, px) PSS of a planar chaotic orbit obtained
by perturbing the thr1 PO by Δx = 10−5 at E2 = −0.3157.
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(a)

(b) (c)

Fig. 14. (Case 3 of Table 1) The 3D (x, z, pz) projection of
the system’s 4D PSS at energy E3 = −0.2941 with conse-
quents colored according to their px coordinate. A pertur-
bation of the multiplicity two, simple unstable thrz1(mul2)
PO (Δz = 3 × 10−6) leads to the creation of two figure-
8 structures, while a perturbation of the multiplicity four,
stable thrz1(mul4) PO (Δx = 10−5, Δz = 6 × 10−5, and
Δpz = 8×10−5) results in the creation of four tori. In (a), x-
and z-axes have been cropped around the purple dashed lines,
while the numbered black, line-connected symbols show the
first five consequents of an initial condition on one of the tori.
(b) and (c), respectively, show magnifications of the regions
around the lower and upper figure-8 structures in panel (a).

PO occur in phase space regions that are far apart
from each other, we narrowed down the x- and
z-axes displayed in Fig. 14(a) to the area within
the purple dashed lines (excluding the intervals
1.135 < x < 1.27 and 0.315 < z < 0.48). This
adjustment was made to consolidate all structures
into a single panel.

The black, line-connected symbols in Fig. 14(a)
depict the first five consequents of an initial condi-
tion on a torus around the stable thrz1(mul4) PO,
and clearly show the way the four tori are formed.
Each one of the two figure-8 structures, along with
the tori they surround, becomes more apparent in

the magnifications provided in Fig. 14(b), showing
the tori where points “1”, “3”, and “5” are located,
and Fig. 14(c) depicting the PSS region around the
other two tori. We also note that in each panel of
Fig. 14, we used a different color scale range to color
the consequents according to their px coordinate.
This was done to distinctly showcase the smooth
color variation across the different structures.

Therefore, once more in this case, we observe
a recurring pattern: the emergence of a figure-
8 configuration near the parent simple unstable
PO, encompassing tori around the bifurcated stable
PO exhibiting a smooth color variation. This sce-
nario mirrors what we witnessed in Fig. 7 follow-
ing a pitchfork bifurcation, as well as in Figs. 11(b)
and 12(b), after a period-doubling one.

Regarding radial perturbations, it is notable
that for Ej = E3, even small Δx perturbations (of
the order of Δx = 10−8) applied to the planar sim-
ple unstable thr1 PO result in a planar chaotic orbit.
Similarly, minor perturbations of the 3D-PO thrz1

also lead to highly chaotic orbits, displaying clouds
of scattered consequents with mixed colors in the
4D PSS we visualize using the color and rotation
method. It is worth noting that, for both families,
energy E3 is significantly larger than the energies
EA and EB , at which these families were introduced
in the system. Conversely, the recently bifurcated
thrz1(mul2) family, which is also simple unstable
due to its radial instability, exhibits a similar behav-
ior under radial perturbations at E3 with what we
observed when applying vertical perturbations. In
other words, its perturbation leads to the appear-
ance of persistent 8-shaped structures with smooth
color variation.

4.4.4. Case 4

The final case we consider is for energy E4 =
−0.2907, for which the POs of all families are unsta-
ble. In particular, the thr1, thrz1, and thrz1(mul2)
POs are simple unstable, while the thrz1(mul4) PO
is complex unstable. In this case, none of the con-
sidered POs has tori around them where regular
motion occurs. The perturbation of any PO of the
four families leads to chaotic orbits whose conse-
quents form mixed-color clouds of scattered points,
which eventually diffuse to larger regions of the
PSS. Such an example is seen in Fig. 15 where
the 3D projection (x, z, pz) of the 4D PSS for a
Δz = 10−5 perturbation of the thrz1 PO is shown.
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Fig. 15. (Case 4 of Table 1) The 3D-colored (x, z, pz) pro-
jection of the system’s 4D PSS at energy E4 = −0.2907 for
a Δz = 10−5 perturbations of the simple unstable PO thrz1.

5. Summary and Discussion

We performed a detailed numerical investigation
of the evolution of the phase space structure of
the 3D galactic-type Hamiltonian system (1) along
a series of 2D and 3D bifurcations of families of
POs. More specifically, we considered successively
the pitchfork bifurcation of the planar 2D-family
thr1 (and its symmetric counterpart thr1S) from
the 2D-family x1 (Sec. 4.2), and of the 3D-family
thrz1 (and thrz1S) bifurcated from thr1 (Sec. 4.3).
In these bifurcations, the parent family undergoes a
transition from stability to simple instability, which
results in the creation of two new families of stable
POs of the same multiplicity. In addition, we inves-
tigated in Sec. 4.4 how the phase space is struc-
tured after the 3D period-doubling bifurcations of
thrz1(mul2) from thrz1 and of thrz1(mul4) from
thrz1(mul2). In these latter cases, the transition of
the parent family from stability to simple instabil-
ity creates a child stable family of POs having twice
the multiplicity of the parent one.

In all studied cases, the consequents of orbits
obtained by small perturbations of stable POs form
well-defined tori in any 3D projection of the sys-
tem’s 4D PSS. These tori are characterized by a
smooth variation of colors (colors indicate the value
of the fourth PSS coordinate) across their sur-
faces. The variation of the colors is smooth but not
necessarily simple. Across the tori, we observe a
simultaneous color variation in both the poloidal
and toroidal directions on the torus, along with
a distinct shift of a primary hue from the inner
to the outer side of the torus at specific regions
(see e.g. Fig. 4). This outcome, alongside ear-
lier research [Katsanikas & Patsis, 2011; Zachilas
et al., 2013], suggests the ubiquity of this pattern

concerning the phase space structure near stable
POs in 3D-autonomous Hamiltonian systems and
4D-symplectic maps.

In this study, we have delved deeper into exam-
ining how the phase space structure evolves in the
neighborhood of a PO during its shift from stability
to simple instability. This transition can manifest
under different conditions: After a pitchfork bifur-
cation, we have the creation of two new families
of stable POs sharing the same multiplicity with
the parent family. Within the 4D PSS, these new
stable POs are surrounded by two distinct sets of
tori. This means that orbits originating from one
torus consistently remain on the surface of the same
torus (Fig. 7). On the other hand, a period-doubling
bifurcation results in the birth of families of POs
having double the multiplicity of the parent fam-
ily. In this case, perturbations of the created stable
POs lead to the formation of more than one inter-
connected tori. For example, a regular orbit in the
vicinity of the stable thrz1(mul2) PO of multiplicity
two forms two tori by having its consequents con-
stantly alternating between them [Fig. 11(b)]. In the
same way, perturbations of multiplicity four, stable
POs lead to the formation of four interconnected
tori, as in Fig. 14(a) for the case of the thrz1(mul4)
family.

In almost all cases of transitions from stabil-
ity to simple instability (see also Fig. 13 for a case
associated with double instability), a recurring pat-
tern emerges: the appearance of figure-8 structures.
These structures arise when perturbations are intro-
duced to the parent family past the bifurcation
point once it has become simple unstable. They
encircle the tori formed from perturbations of the
bifurcated stable POs and display a smooth color
variation on their surfaces. An exception to this
rule arises in the instance of planar simple unstable
POs that are vertically unstable and radially sta-
ble, when subjected to radial perturbations. In such
cases, there will always be a range of radial pertur-
bations where the resulting planar orbits become
quasiperiodic, as observed in the case of thr1 just
beyond E = EB (Sec. 4.3). Consequently, these
orbits will manifest as invariant curves in the (x, px)
projection of the 4D PSS.

The existence of the 8-shaped structures is con-
nected to the existence of the tori of the regular
quasiperiodic orbits around the stable bifurcated
families. This holds in all kinds of bifurcations we
examined, i.e. the pitchfork bifurcation of family
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thrz1 from thr1, as well as the period-doubling
bifurcations of families thrz1(mul2) and thrz1(mul4)
from thrz1 and thrz1(mul2), respectively.

At energies distant from the bifurcation point,
the coherence of the figure-8 structure diminishes,
causing the points forming it to eventually disperse
into phase space regions far from the unstable par-
ent PO [Figs. 11(a) and 12(b)]. We hardly observe
such structures at energies where the tori of the
bifurcated families are disrupted due to the insta-
bility of the parent POs. This emphasizes the cor-
relation between the presence of the two structures
(8-shaped figures and tori). Both persist as long as
they are simultaneously present.

In general, the structure of phase space in the
neighborhood of a PO is linked to the properties
of the POs existing close by. As their properties
vary with the energy, alterations take place in the
initially formed structures. For this reason, we con-
sider structures typical for a kind of orbital instabil-
ity, as those observed just beyond the bifurcation,
which introduces the related POs into the system.

An intriguing discovery from our research is
associated with the shape of perturbed orbits near
the 3D-pitchfork bifurcation discussed in Sec. 4.3.
As the system’s energy approaches the bifurcation
point (energy EB in this instance), the vertical per-
turbations of the 2D-thr1 PO [Fig. 10(b)] generate
structures resembling that of the bifurcated family
thrz1 [Figs. 10(c) and 10(d)], even though this fam-
ily has not yet been introduced into the system. In
a way, the dynamical system anticipates the form of
orbits that will arise following the bifurcation. This
behavior has been observed previously (also refer-
enced in [Patsis & Katsanikas, 2014a]) and warrants
further investigation regarding its implications for
the study of analogous systems.
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Appendix A

3D Perturbations of Radially
Unstable and Vertically Stable POs

Let us make a note about the study of 3D orbits
near simple unstable POs that maintain vertical
stability, like the one depicted in Fig. 5. In such
cases, it is crucial to employ a sufficiently small ver-
tical perturbation to unveil the phase space struc-
ture surrounding the PO. This precaution prevents
the perturbed orbit from entering regions influenced
by other nearby POs, such as the surface of a torus
of a quasiperiodic orbit around a neighboring sta-
ble PO. Yet, with extremely minute perturbations,
the “width” of the torus might become significantly
narrow, posing a challenge for standard graphics
packages to distinguish between the front and back
sides.

In such instances, an additional surface of sec-
tion could aid in verifying the smoothness of the
color distribution. For example, the outcome of
the prolonged integration of the perturbation by
Δz = 10−3 of the simple unstable x1 PO at the
same Ej value as in Fig. 5, is shown in Fig. 16(a).
The apparent blending of colors here results from
the narrow width of the ribbon-like structure in the
(x, px, z) projection. However, narrowing the range
of the z values even further, for example by set-
ting 0.0048 ≤ z ≤ 0.005 [Fig. 16(b)] and rotating
the (x, px, z) projection at an appropriate angle
[Fig. 16(c)], can lead to a clearer understanding of
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(a) (b)

(c) (d)

Fig. 16. (a) The 3D-colored (x, px, z) projection of the system’s 4D PSS for a perturbation of the unstable x1 PO by
Δz = ×10−3 for Ej = −0.3919. (b) Similar to (a), but for a narrower range of z values (0.0048 ≤ z ≤ 0.005). (c) The same
data as in (a) but for a different projection angle. Here, it becomes apparent that blue and red hues do not mix. (d) The same
data as in (a), but now points are colored according to their |pz| value so that a smooth color variation becomes apparent.

the created structure. In Fig. 16(c), the colors seg-
regate distinctly, even revealing the locations where
they transition from one side to the other. In poten-
tials having a symmetry with respect to a spatial
variable, as in our case where we have a symmetry

with respect to the z = 0 plane, a reliable indicator
of smooth color variation can be obtained by color-
ing the consequents according to the absolute value
of their fourth coordinate, i.e. |pz| [Fig. 16(d)].
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